
Introduction to Python
and VTK

Scientific Visualization
Workshop 2014

Johan Nysjö
Centre for Image analysis
Swedish University of Agricultural Sciences
Uppsala University

About me
● PhD student in Computerized Image Analysis

● Develop methods and tools for interactive analysis of medical

3D (volume) images

History
● The Python programming language was developed in

the late 1980s by a Dutch computer programmer
named Guido Van Rossum (who now is the
Benevolent Dictator for Life of the language)

● First version released in 1991

● Named after the Monty Python comedy group, not the
snake...

Key features
● General-purpose, high-level programming language

● Clear, readable syntax (similar to pseudocode)

● Dynamically AND strongly typed (see explanation here)

● Multi-paradigm: you can write code that is (fully or partially)
procedural, object-oriented, or functional

● No compiling*

● Has extensive standard libraries and a rich selection of
third-party modules

● Good for rapid prototyping

* some compiling is performed in the background to transform source code to byte code (*.pyc files)

https://wiki.python.org/moin/Why%20is%20Python%20a%20dynamic%20language%20and%20also%20a%20strongly%20typed%20language

Running a Python program
● Suppose that we have a program hello.py containing

this single line of code:

● To run this program, just open a terminal, navigate to
the directory of the file, and type

Built-in numeric types
● Integers (int): 1, 2, 3

● Floats (float): 0.1, 3.141592 (64-bit by default)

● Complex: 0+1j, 1.1+3.5j

● Booleans: True, False

Container types
● Strings (str): ”python”, ”foo”

● Lists (list): [1, 2, 3], [0.5, ”bar”, True], [[0, 1, 0], [1, 0, 0]]

● Tuples (tuple): (1, 2, 3)

● Dictionaries (dict): {”key0”: 1.5, ”key1”: 3.0}

● Strings and tuples are immutable (i.e., cannot be
modified after creation), whereas lists and dictonaries
are mutable (can be modified)

● Lists, tuples and dictionaries can contain mixed types

Control flow
● No switch-statement, but otherwise all the familiar

control-flow statements are there. Examples:

Functions
● Functions are defined like this:

Whitespace-sensitive syntax
● Python uses ”:” and whitespace indentation to delimit code

blocks, e.g., define where a function or control-flow
statement starts and stops

● Controversial design choice...

● Forces you to write readable (or at least well-indented)
code

File I/O
● Using the with statement (available since Python 2.5),

reading or writing to file is really simple:

Classes
● Python supports object-oriented programming

(unlike Java or C++, getters and setters are normally not used in Python)

Modules
● Every *.py file is a module

● Related functions and classes should be grouped into
modules

● You can then use the import statement to import the
module (or some selected part of it) into your script

● Related modules can be grouped into a package
(good if you plan to distribute your code)

The Python standard library
● Provides modules for file and directory access,

mathematics, testing, GUI programming, networking,
etc

● Read more about it on
http://docs.python.org/2/library/index.html

● Some useful modules from the standard library are
▬ math (mathematical functions and constants)
▬ os (operating system functionality)
▬ sys (system-specific parameters and functions)

http://docs.python.org/2/library/index.html

Python versions (2.x vs. 3.x)
● The Python 3.x branch is a revision of the language and

offers many improvements over Python 2.x

● However, Python 3.x is not backward-compatible, and
many existing packages (e.g., VTK) for Python 2.x have
not yet been ported to Python 3.x

● Python 2.x is still more widely used

● See http://wiki.python.org/moin/Python2orPython3 for
more info

● In this workshop we will use Python 2.6 or 2.7

http://wiki.python.org/moin/Python2orPython3

Text editors, IDEs, and
interactive shells

● You can write your Python code in a text editor like Vim or
Emacs, or use an IDE (see this list for options)

● The standard Python shell is great for trying out language
features

● For a more powerful interactive computing environment,
have a look at IPython

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
http://ipython.org/

Style guide for Python code (PEP8)
● To simplify the life for Python programmers, some of the

language developers sat down and wrote a style guide for
Python code: PEP8

● The guidelines in PEP8 are just recommendations: you are
free to break them and define your own coding style guide
(but please be consistent)

http://www.python.org/dev/peps/pep-0008/

When you need more speed
● NumPy & SciPy

● Cython (supports parallel processing via OpenMP)

● PyCUDA

● PyOpenCL

http://www.scipy.org/index.html
http://cython.org/
http://mathema.tician.de/software/pycuda/
http://mathema.tician.de/software/pyopencl/

Other useful packages
● Graphics programming and visualization

▬ PyOpenGL, VTK, Mayavi

● GUI programming
▬ PyQt/PySide, wxPython, Tkinter

● Image analysis and processing
▬ ITK, Pillow

● Computer vision
▬ OpenCV

● Plotting
▬ Matplotlib

Python tutorials
● If you are new to Python, start with:

https://docs.python.org/2/tutorial/
● Zed Shaw's ”Learning Python The Hard Way” is also a

good (but more demanding) tutorial:

http://learnpythonthehardway.org/book/

https://docs.python.org/2/tutorial/
http://learnpythonthehardway.org/book/

The Visualization Toolkit (VTK)
● Open source, freely available C++ toolkit for

▬ scientific visualization
▬ 3D computer graphics
▬ mesh and image processing

● Managed by Kitware Inc.

http://www.kitware.com/

VTK
● Object-oriented design

● High level of abstraction (compared to graphics APIs like
OpenGL or Direct3D)

● Provides bindings to Tcl/Tk, Python, and Java

● GUI bindings: Qt, wxWidgets, Tkinter, etc

Heavily object-oriented
(and a bit over-designed...)

Some examples of what you
can do with VTK

● Create visualizations of
▬ scalar, vector, and tensor fields

▬ volume data (e.g., 3D CT or MRI scans)
● Mesh and polygon processing

● Image analysis (2D and 3D images)

● Isosurface extraction

● Implementing your own algorithms

Volume rendering

Rendering graphical 3D models
(imported from .stl, .ply, .obj, etc)

Rendering performance
● VTK has decent rendering performance and is good for

rapid prototyping of 3D visualization tools

● Not suitable for rendering large realistic 3D scenes with
lots of dynamic content (i.e., games)

The visualization pipeline

Input data Visualization

The visualization pipeline
● To visualize your data in VTK, you normally set up a

pipeline like this:

Source/Reader Filter Mapper Actor

Renderer InteractorRender Window

Sources
● VTK provides various source classes that can be used

to construct simple geometric objects like spheres,
cubes, cones, cylinders, etc...

● Examples: vtkSphereSource, vtkCubeSource,
vtkConeSource

source/reader → filter → mapper → actor →
renderer → renderWindow → interactor

Readers
● Reads data from file

● You can use, e.g., vtkStructuredPointsReader to
read a volumetric image from a .vtk file

● or vtkSTLReader to load a 3D polygon model from
a .stl file

● If VTK cannot read your data, write your own reader!

source/reader → filter → mapper → actor →
renderer → renderWindow → interactor

Filters
● Takes data as input, modifies it in some way, and

returns the modified data

● Can be used to (for example)
▬ select data of a particular size, strength, intensity, etc
▬ process 2D/3D images or polygon meshes
▬ generate geometric objects from data

source/reader → filter → mapper → actor →
renderer → renderWindow → interactor

Mappers
● Maps data to graphics primitives (points, lines, or

triangles) that can be displayed by the renderer

● The mapper you will use most in the labs is
vtkPolyDataMapper

● vtkPolyDataMapper maps polygonal data
(vtkPolyData) to graphics primitives

source/reader → filter → mapper → actor →
renderer → renderWindow → interactor

Image source: http://www.realtimerendering.com

Actors
● vtkActor represents an object (geometry and properties)

in a rendering scene

● Has position, scale, orientation, various rendering
properties, textures, etc. Keeps a reference to the mapper.

source/reader → filter → mapper → actor →
renderer → renderWindow → interactor

Rendering
● The process of converting 3D graphics primitives

(points, lines, triangles, etc), a specification for lights
and materials, and a camera view into an 2D image
that can be displayed on the screen

Image source: http://www.realtimerendering.com

Renderer
● vtkRenderer controls the rendering process for actors

and scenes

● Under the hood, VTK uses OpenGL for rendering

source/reader → filter → mapper → actor →
renderer → renderWindow → interactor

Image source: http://www.realtimerendering.com

Render window
● The vtkRenderWindow class creates a window for

renderers to draw into

source/reader → filter → mapper → actor →
renderer → renderWindow → interactor

Interactors
● The vtkRenderWindowInteractor class provides

platform-independent window interaction via the
mouse and keyboard

● Allows you to rotate/zoom/pan the camera, select and
manipulate actors, etc

● Also handles time events

source/reader → filter → mapper → actor →
renderer → renderWindow → interactor

Example 1:
Rendering a cube

Pipeline for the cube example

Source

import vtk

Generate polygon data for a cube
cube = vtk.vtkCubeSource()

source/reader → filter → mapper → actor →
renderer → renderWindow → interactor

Mapper

Create a mapper for the cube data
cube_mapper = vtk.vtkPolyDataMapper()
cube_mapper.SetInput(cube.GetOutput())

source/reader → filter → mapper → actor →
renderer → renderWindow → interactor

Actor

Connect the mapper to an actor
cube_actor = vtk.vtkActor()
cube_actor.SetMapper(cube_mapper)
cube_actor.GetProperty().SetColor(1.0, 0.0, 0.0)

source/reader → filter → mapper → actor →
renderer → renderWindow → interactor

Renderer

Create a renderer and add the cube actor to it
renderer = vtk.vtkRenderer()
renderer.SetBackground(0.0, 0.0, 0.0)
renderer.AddActor(cube_actor)

source/reader → filter → mapper → actor →
renderer → renderWindow → interactor

Render window

Create a render window
render_window = vtk.vtkRenderWindow()
render_window.SetWindowName("Simple VTK scene")
render_window.SetSize(400, 400)
render_window.AddRenderer(renderer)

source/reader → filter → mapper → actor →
renderer → renderWindow → interactor

Interactor

Create an interactor
interactor = vtk.vtkRenderWindowInteractor()
interactor.SetRenderWindow(render_window)

Initialize the interactor and start the
rendering loop
interactor.Initialize()
render_window.Render()
interactor.Start()

source/reader → filter → mapper → actor →
renderer → renderWindow → interactor

Source code – cube.py
● Included in the .ZIP file containing the source code

and datasets for Lab 1

● You can download it from the course webpage

Example 2:
Earthquake data

Visualizing the quakes with sphere
glyphs

Sphere glyphs
PositionStrength

Colormaps

See this paper for a discussion on why the ”rainbow” colormap
is a poor choice for most applications

http://www.sandia.gov/~kmorel/documents/ColorMaps/

Colormaps

Colormaps

Example 2:
Air currents

Arrow glyphs, first try

Arrow glyphs, first try

Direction and speed

Cut planes

Cut planes

Direction and speed

Arrow glyphs, second try

Arrow glyphs, second try

Direction and speed

Streamtubes

Streamtubes

Seeds (starting points)Direction and speed

Example 3:
Medical 3D data

Outline

Outline

Volume image

Multi-planar reformatting (MPR)

Multi-planar reformatting (MPR)

Volume image

Surface rendering

Surface rendering
Segmented volume image

Combined visualization

Summary
● VTK contains thousands of classes and might seem a

bit intimidating at first...
▬ however, one can create useful visualizations with just

a few core classes

● The pipeline is typically

source/reader → filter → mapper → actor → renderer
→ renderWindow → interactor

● Use VTK's example programs as templates when you
write new programs!

Resources
● http://www.vtk.org/

● http://www.vtk.org/VTK/resources/software.html

● http://www.vtk.org/doc/release/5.10/html/

● http://www.vtk.org/Wiki/VTK/Examples

http://www.vtk.org/
http://www.vtk.org/VTK/resources/software.html
http://www.vtk.org/doc/release/5.10/html/
http://www.vtk.org/Wiki/VTK/Examples

More resources
● Anders has created a tutorial demonstrating how to

use VTK with Python

● Includes lots of examples

● You can access the tutorial here

http://www.uppmax.uu.se/docs/w/index.php/VTK_Tutorial

Installing VTK on Linux
● Included in the package repository of most Linux

distributions

● On Ubuntu 12.04 you can install VTK and the Python-
wrapper with the command

sudo apt-get install libvtk5-dev python-vtk

● Also fairly easy to build VTK from source. You need
GCC, CMake, + some extra dependencies

● Finally, you can install VTK via the Python distribution
Anaconda (see next slide)

Installing VTK on Windows
● Don't bother compiling it yourself (unless you have

plenty of time to spare)

● Install it via one of the following Python distributions:
▬ Anaconda (VTK is available in the package repository)
▬ pythonxy (Warning! will override existing Python

installations)
● More detailed installation instructions can be found on

the course webpage

http://continuum.io/downloads
http://repo.continuum.io/pkgs/
https://code.google.com/p/pythonxy/

Installing VTK on Mac
● Install it via Anaconda (see previous slide)

● Expect to spend several hours in front of the compiler
if you try to build it yourself...

Paraview and Mayavi
● Free data visualizers built on VTK

● You can use them to try out different visualization
techniques (without writing a single line of code)

● Links:
▬ http://www.paraview.org/

▬ http://docs.enthought.com/mayavi/mayavi/index.html

http://www.paraview.org/
http://docs.enthought.com/mayavi/mayavi/index.html

MeVisLab
● Graphical programming environment for medical image

processing and visualization

● Uses VTK for visualization and ITK for image processing

See you on the lab!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

