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First: A trip through the 
programmable graphics pipeline



Transparency



Transparency
● Many uses in visualization:

▬ Visualizing data with different layers

▬ Showing hidden structures and reducing clutter

▬ Volume rendering

▬ Overlays and user-interfaces (UI)



Alpha blending
● Composites (blends) the values of two fragments

● The OVER operator [Porter and Duff '84] used for
back-to-front alpha blending:

Image source: http://www.realtimerendering.com



Order-dependent transparency
● The OVER operator is not commutative!

● Thus, requires depth sorting (~O(n log n)):

1.Sort primitives (triangles) by distance from camera

2.Render back-to-front (Painter’s algorithm)

Image courtesy: Johan Nysjö

Unsorted (incorrect) transparency Sorted (correct) transparency



Painter's algorithm

Image source: https://en.wikipedia.org/wiki/Painter's_algorithm



Painter's algorithm: Failure case



Order-independent transparency
● Order-independent transparency (OIT) methods does 

not require primitive sorting

● Stores fragments for sorting afterwards (A-buffer) or 
uses commutative blend equations (blended OIT)

● Other techniques: Depth-peeling (available in VTK)  

Image source: https://developer.nvidia.com

Weighted blended OIT

http://www.vtk.org/Wiki/VTK/Depth_Peeling


Depth-peeling (basic idea)

Peeled layer 1

Front-to-back 
blended result

Peeled layer 2 Peeled layer 3

Peeled layer 5Peeled layer 4

Image courtesy: Johan Nysjö



Shadows and Ambient Occlusion



Is the bunny standing on the ground 
or floating in the air?





Shadows
● Important depth cue: helps us perceive depth and spatial 

relations between 3D objects

● Common techniques:

▬ projective shadows

▬ shadow mapping (lots of variations)

▬ shadow volumes

● Trade-off between speed and quality



Shadow mapping
● Basic idea:

1. Render the scene depth 
values (from the light's 
perspective) into a texture 
to generate a shadow 
map

2. Render the scene again 
(color and depth values) 
from the viewer's 
perspective and compare 
the location of each 
fragment with the shadow 
map to determine if the 
point is in shadow

Shadow map Same scene rendered 
from the viewers 
perspective (with the 
shadow map applied)

Image courtesy: http://www.realtimerendering.com



Ambient occlusion
● Simulates self-shadowing and shadowing of ambient light

● Surface points that are occluded becomes darker

No shadows With ambient occlusion Full global illumination

Image courtesy: http://www.realtimerendering.com



Screen-space ambient occlusion
● Render scene depth and normals to textures and compute 

dynamic ambient occlusion in a post-processing pass

● Most techniques uses a rotating filter mask with uniformly 
distributed points to sample the depth and normal textures

● A subsequent blurring pass is required to remove noise

Image courtesy: http://www.realtimerendering.com



Screen-space ambient occlusion

* =

Ambient lighting Occlusion Final shading



Volume Rendering



Volume rendering applications
● Medical visualization

● Scientific visualization

● Computer games and visual effects
▬ Clouds

▬ Fire

▬ Smoke

▬ Volumetric fog

Image source: http://www.blender.org



Digital images

2D image 3D (volume) image

Pixel
Voxel



Volume data

Computed tomography (CT) image of a foot. The 
intensity values of the voxels represent different 
tissue types (bone, soft tissue, skin, etc)

● Represented as regular 3D 
grids with scalar or vector 
values

● Can be aquired with, e.g., 
a CT scanner or be 
generated procedurally

● Voxels can be anisotropic 
(have non-uniform size)

 



Multi-planar reformatting (2D slices)



Ray-casting
● For each fragment (i.e., each pixel in the viewport), cast a ray 

from the starting point (front face) and sample the volume along 
the ray direction at even intervals until the ray reaches the end 
point (back face)  

Image plane

Eye/camera

Volume

Ray



Front-face image (starting points)

Ray-start positions* displayed as RGB colors

*Specified as 3D texture coordinates (s,t,p) ranging from 0.0 to 1.0



Back-face image (end points)

Ray-end positions* displayed as RGB colors

*Specified as 3D texture coordinates (s,t,p) ranging from 0.0 to 1.0



GPU-accelerated ray-casting
● Basic algorithm:

1. Render the front face of the volume image's bounding box 
to a 2D RGB texture to obtain ray starting points

2. Render the back face of the bounding box to a 2D RGB 
texture to obtain ray end points

3. Render a fullscreen quad and (in the ray-casting fragment 
shader) subtract the back-face texture from the front-face 
texture to obtain ray direction

4. Given the ray starting points and direction vectors, cast a 
ray from each fragment into the volume image

5. Let the ray gather color and transparency information from 
the voxels it passes through



Maximum intensity projection (MIP)
● Basic idea: extract the maximum intensity value along 

each ray to create an X-ray-like projection of the data



Isosurface rendering
● Stop raycasting at first opacity value above threshold, and 

compute surface normal and other attributes for shading

● With direct volume rendering, the isovalue can be updated 
interactively



Front-to-back alpha blending



Front-to-back alpha blending
● Define a transfer function (TF) that maps voxel intensity to 

color and opacity

● Create a semi-transparent projection of the volume by 
accumulating opacity values along each ray while composing 
(blending) colors



TF example (Human CT data)
● Bone tissue (which has high intensity) will become 

white/yellowish and less transparent

● Soft tissue (which has low intensity) will become red/orange 
and more transparent



Other TF examples (Wind speed)



Other TF examples (Solar dust)



Acceleration methods: Empty-space 
skipping

● Improves performance by rendering a more fine-graind 
bounding geometry (from min-max value blocks)

Front faces Back faces



Direct volume rendering vs. geometry-
based rendering

● Direct volume rendering

+ Allows showing other aspects of the data (MIP, transparency)

+ Isovalue and other parameters can be changed interactively.      
   Easy to add cut planes!

– Slow (without proper acceleration data structures)

● Geometry-based rendering

+ Fast (uses the standard GPU rasterization pipeline)

+ High data reduction (but information can be lost)

– Changing isovalue requires recomputing the whole geometry



Geometry-based rendering: 
Polygonisation

Image source: Wikipedia

● Examples: Marching cubes, dual contouring, ...
● Anders covered this topic in lecture 3



Geometry-based rendering: 
Splatting

Image source: http://www.realtimerendering.com



Splatting
● Basic idea: for each boundary voxel (or grid cell with 

an intersection), emit a point and throw (”splat”) it onto 
the image plane 

● Convolution is used to fill in holes

● Points can be extracted in a pre-processing step 
(similar to Marching Cubes)

● Efficient implementations exist for both the CPU and 
the GPU

Image source: http://www.realtimerendering.com



Volume rendering software

ParaView



Volume rendering software

Voreen



Volume rendering software

Inwivo



Large-Scale Visualisation
(Extra slides)
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