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Abstract

Skeletonization will probably become as valuable a tool for shape analysis in 3D, as it is in 2D. We present a topology
preserving 3D skeletonization method which computes both surface and curve skeletons whose voxels are labelled with
the D¢ distance to the original background. The surface skeleton preserves all shape information, so (close to) complete
recovery of the object is possible. The curve skeleton preserves the general geometry of the object. No complex
computations, large sets of masks, or extra memory are used, which make implementations efficient. Resulting skeletons
for geometric objects in a number of 2 Mbyte images are shown as examples. © 1999 Pattern Recognition Society.

Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The history of skeletonization of digital objects is al-
most as old as digital image analysis itself. The purpose is
to reduce 2D discrete objects to (1D) linear representa-
tions preserving topological and geometrical informa-
tion. Given an input binary image, skeletonization
changes non-skeletal object pixels into background
pixels. Regardless of the scheme adopted to perform
skeletonization, the resulting skeleton is a union of
curves placed symmetrically with respect to the border of
the object. The literature on 2D skeletonization is very
rich. An outline of various thinning and skeletonization
methodologies can be found in Ref. [1].

Reducing discrete structures to lower dimensions is
even more desirable when dealing with (3D) volume
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images. The result of 3D skeletonization is either a set of
3D surfaces and curves, or if even more compression is
desired, a set of only 3D curves. The compression to 3D
curves is possible only for solid objects having no cavi-
ties. A hollow torus, e.g. could never be reasonably repre-
sented by a curve skeleton. The skeleton could be
a promising tool for an increasing number of applica-
tions, especially in biomedical imagery. However, com-
pared to the literature on 2D skeletonization, the articles
published on 3D skeletonization are still not very numer-
ous. The main reason for this seems to be the difficulty to
address and efficiently solve essential problems, such as
topology preservation, in more than two dimensions. In
fact, although many concepts such as Euler character-
istics, simple points and connectivity have been studied
in the past years (e.g. Refs. [2-6]), the implementation of
skeletonization methods based on their use is rather
complicated.

The general strategy for 3D skeletonization does not
differ significantly from the strategy in the 2D case.
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Object voxels are changed to background voxels under
the constraint that topology and geometry of the object
are preserved. However, a number of new problems have
to be solved in the 3D case. For example, when designing
topology preserving removal operations, besides preven-
ting disconnections and creation of cavities, which must
be done also in 2D, one must also avoid the creation of
tunnels and the excavation of unwanted deep cavities in
complex surfaces. It seems that the geometry preserving
criteria, i.e. the definition of protrusions or end-points,
are what separates existing algorithms; every author has
his own criteria, resulting in very different skeletons.

If the skeletal voxels are labelled with their distance
to the original background and skeletonization is per-
formed in a way that guarantees the inclusion in the
skeleton of object voxels having locally maximal dis-
tance, skeletonization becomes reversible. The object can
be recovered by applying the reverse distance trans-
formation to the skeleton, see Ref. [7]. This recovery
property is disregarded in many approaches, but is, e.g.
present in an algorithm to compute surface skeletons that
we have recently proposed [8]. A curve skeleton cannot
include enough information for recovery in the general
case.

An early work on curve skeletons can be found in Ref.
[9], where iterative thinning is performed based on (un-
fortunately not sufficient) conditions for preservation of
the Euler characteristics. In Ref. [10], a surface skeleton
is obtained for 6-connected objects using topological
numbers in an algorithm using six directional sub-iter-
ations. A thinning scheme based upon eight sub-fields
can be found in Ref. [11], where (only) 26-connectivity is
preserved, either for surface or curve skeletons using the
same topological numbers. In Ref. [12], iterative erosion
resulting in surface skeletons is performed on the object
border using (rather complex) contour information. In
Ref. [5], simple points (removable voxels) are identified
using (fairly large) look-up tables, and removed in three-
scan iterations. The algorithm preserves topology and is
insensitive to noise, but geometry is not fully preserved
by the resulting surface skeletons. This work is continued
in Ref. [13]. In Ref. [4], the Euler characteristics are
stored in look-up tables and used to identify simple
points in a six directional sub-iterations algorithm. The
result is either a surface or a curve skeleton depending on
which end-point condition is used. In Ref. [ 14], six direc-
tional sub-iterations are also used. Nice rotation inde-
pendent surface or curve skeletons are obtained by using
the Euclidean distance transform. In Ref. [15], objects
are reduced directly to 3D curves using four classes (each
with a number) of deleting templates. The algorithm is
demonstrated on visual analysis of computer tomogra-
phy lung data. In many other papers on skeletonization
of volume objects, the only examples given are tiny test
images, which makes it difficult to understand what the
results would be for reasonably sized and/or real images.

The concept of skeletonization has also been extended
to four-dimensional data, e.g. Ref. [16], where the Euler
characteristics are utilized, and different end-point condi-
tions decide the dimensionality of the skeleton.

In this paper we describe a method for thinning a vol-
ume (voxel) object to a skeleton whose voxels are labelled
with the (D®) distance to the original background. Our
skeletonization method is performed in two major steps.
The first step reduces the object to a surface skeleton
(Section 3), which requires two iterative phases. During
the first phase, non-multiple voxels are iteratively re-
moved until an at most two voxel thick surface of skeletal
voxels is identified. During the second phase, this set is
reduced to a set of one voxel thin surfaces (and curves).
The original object can be recovered from its surface
skeleton, using the distance labels. The recovery is exact if
started from the “thick” skeleton from the first phase,
whereas some border voxels may be missing if the one
voxel thin skeleton is used. The second step reduces the
surface skeleton to a curve skeleton (Section 4), which
also requires two phases. The skeletons are topology
preserving, but some (exceptional) objects cannot be re-
duced to skeletons. We present resulting skeletons for
a number of 2 Mbyte images (Section 5). The voxels of
our curve skeletons are labelled with the distance to the
original background. This is useful information also for
the curve skeletons, even though the original object can-
not be recovered in this case.

2. Definitions

Each voxel v has three types of neighbours among its
26 closest neighbours; 6 face-, 12 edge-, and 8 point-
neighbours, that share a face, an edge, and a point with v,
respectively.

In a binary image we define an object component as
a 26-connected set of voxels. As a consequence of the
26-connectedness selected for the object, 6-connectedness
must be used for the background. If the background
consists of exactly one 6-connected component, then the
object is termed a solid object.

A border voxel is an object voxel with a face-neighbour
in the background. Object voxels, which are not border
voxels, are internal voxels.

Vozxels are characterized by the numbers of n-connec-
ted components of object or background in their neigh-
bourhood. For example, a voxel is a break-point voxel if it
has more than one 26-connected object component in its
26-neighbourhood. The recursive algorithm in Ref. [17]
can be used to count connected components efficiently.

N,18 is defined as the number of 6-connected back-
ground components in the 18-neighbourhood of a voxel
having the central voxel as a face-neighbour. On a 3D
surface, an outer voxel is a surface voxel with N 18 = 1. If
N 18 > 11t is called a tunnel voxel, because removing it
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would create a tunnel through the object. This classifica-
tion of surface voxels is discussed in Refs. [18] and [19].

The DS metric is obtained by counting the number of
steps in the minimal 6-connected path between voxels.
The D® distance is the 3D equivalent of the city-block
distance in 2D, see Ref. [20].

The algorithm in this paper is partly parallel in nature,
partly sequential. Operations performed in parallel are
parallel in the sense that the local operations are parallel,
i.e. all voxels can and should be processed simultaneously
in each iteration. In sequential operations, neighbouring
voxels cannot be processed simultaneously. Our method
is implemented on standard sequential computers, using
pseudo-parallel programs.

3. Surface skeletonization

The algorithm described in the following is an im-
proved version of the one presented in Ref. [8].

3.1. Identification of removable voxels

Voxels are iteratively removed from the object, until
no more voxels can be removed. Each iteration
consists of four steps (or scans through the image). Every
step can be performed in parallel.

Step 1:

(1) Among voxels not already labelled, identify border
voxels, and label them with the current iteration
number.

(2) Among internal voxels, identify voxels with an edge-
neighbour in the background and label them with the
current iteration number plus one.

Step 2: Among voxels labelled with the current iter-
ation number, mark those that are multiple.

Step 3: Among non-multiple voxels labelled with the
current iteration number, mark as tunnel voxels
those for which N 18 >1. When computing
N,18 > 1 neighbouring non-multiple voxels labelled
with the current iteration number are interpreted as
background voxels, i.e. they are treated as if they were
already removed.

Step 4: Remove all unmarked border voxels.

The process terminates when all border voxels are mul-
tiple, and hence no more voxels can be removed.

During Step 1 border voxels in all directions are simul-
taneously identified, in contrast to some earlier parallel
thinning work, e.g. Refs. [4,10], where each iteration is
divided into six directional sub-iterations. That direc-
tional strategy is a generalization of the 2D case, but it
may cause topological problems in 3D, such as discon-
necting objects.

Fig. 1. Where two surfaces cross the outermost voxels of the
crossing are removed, but creation of deep cavities is prevented
by Step 1 (ii) of the algorithm.

Since only border voxels are candidates for removal,
cavities are not created. Labelling the voxels with an
edge-neighbour in the background with the iteration
number plus one, gives them the correct distance label
(from the original background). This is important for
object recovery, and guarantees that Step 2 will be per-
formed on all voxels with the same distance in the same
iteration. An illustrative example is shown using two
crossing planes, see Fig. 1. Consider the internal voxels
placed at the intersection of the planes, and suppose that
we do not label them as requested by Step 1 (ii). Removal
of the border voxels in the intersection, exposes to the
background other voxels in the intersection. These voxels
would become removable in the next iteration. By iterat-
ing this removal, the surface skeleton would finally have
four planes linked to each other only by a single middle
voxel. This would still be topologically correct, but not
very geometry preserving. If we instead consider that all
voxels in the intersection would have the same distance
label in the D® distance transform of the object, it be-
comes apparent that they should all be checked for re-
moval in the same iteration. Labelling the voxels with an
edge-neighbour in the background as in Step 1 (ii) pre-
vents creation of deep, narrow cavities where two surfa-
ces intersect. Consequently, only the outermost voxels of
the crossings are removed.

In Step 2 we identify multiple voxels in a way that is
a generalization of a 2D algorithm that identifies the
multiple pixels on the border of an 8-connected object,
see Ref. [21]. Multiple pixels have been proved to be
equivalent to pixels that can not be removed during
skeletonization, see Ref. [22]. The resulting skeletal
pixels are labelled as they would be in the city-block
distance transform of the object. Moreover, it can be
shown that the multiple pixels include all the pixels that
are local maxima of the city-block distance transform.

For volume images, we define a border voxel of the
current iteration, v, as multiple if any of Conditions
A1-A3 is satisfied:

Condition A1: No pair of opposite face-neighbours (alig-
ned along one of the three principal planes) of v exists
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Fig. 2. The voxel configurations in Conditions A1-A3. Internal voxels are black, border voxels are grey, and background voxels are
white. Rotations of the configurations result in six cases for Condition A1 (left), twelve cases for Condition A2 (middle), and eight cases

for Condition A3 (right).

such that one of them is an internal voxel and the other
a background voxel.

Condition A2: A 2 x 2 neighbourhood of v (in any of the
three principal planes) exists such that the edge-neigh-
bour of v is a border voxel (of the current or an earlier
iteration), and the two face-neighbours are background
voxels.

Condition A3: A 2 x 2 x 2 neighbourhood of v exists such
that the point-neighbour of v is a border voxel (of the
current or an earlier iteration), while the other six neigh-
bours are background voxels.

These conditions are illustrated in Fig. 2. Condition A1l
means that the configuration to the left in the figure does
not occur in any of the three principal planes. Condition
A2 means that the configuration in the middle, or any of
its rotations, occurs and Condition A3 means that the
configuration to the right, or any of its rotations, occurs.
Condition A1 guarantees that protrusion voxels, including
the tip (end-point), are not removed. All three conditions
prevent disconnecting the object. Condition A3 is unique
to the 3D case and is necessary as the object is defined as
26-connected.

Step 3 is necessary to prevent tunnel creation in thin
complex objects, see Refs. [18, 197]. This problem is even
more pronounced when reducing the surfaces to curves,
and will be described in detail in Section 4. At first, it may
seem as if Steps 2 and 3 can be performed in one single
step. However, they cannot; all multiple voxels have to be
identified before the consequence of removal of non-
multiple voxels is known.

The skeletal voxels found by this algorithm constitute
a 26-connected set of voxels, which is at most two voxels
thick. The voxels are labelled with the iteration number,
which means that they have the same label as they would

have if the D® distance transformation had been applied
to the object. The definition of a border voxel ensures
that each successive border layer is 6-connected to the
previous layer, exactly as the layers are ordered in the
D¢ distance transform. For very “noisy” objects, whose
borders consists entirely of multiple voxels, the algorithm
will not work (compare with “Arcelli sets” in 2D [23]).
These objects can generally be created only artificially. If
our skeletonization method was applied to such objects,
no voxels would be removed and the resulting “skeleton”
would be more than two voxels thick. We will not con-
sider this case further. Due to Condition A1, the skeletal
voxels include all the voxels that are local maxima of
the D® distance transform of the object. A local maximum
is defined as a voxel with a label larger than or equal to
that of its face-neighbours. None of the face-neighbours
of a local maximum can then be an internal voxel (an
internal voxel would be labelled with the next iteration
number!) and thus Condition Al holds for the local
maximum.

Top

Back

Left Right

Front Down

Fig. 3. Directions in voxel space.
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A few internal voxels might still remain after this first
thinning in regions where many surfaces and/or curves
meet (due to the fact that remaining object voxels have
formed “Arcelli sets”). It is even conceivable that these
voxels are not yet labelled, i.e. they do not have an
edge-neighbour in the background. Such voxels should
be assigned a label equal to the minimum label in their
6-neighbourhood plus one, which corresponds to the
value they would have in the D® distance transform.

As local maxima are not removed, object recovery is
possible, using the reverse D® distance transformation,
see Ref. [7]. The pseudo-code for the forward pass is
given below. The backward pass is similar, but scans
through the image in the opposite direction.

LOOP_X_Y_Z (image) {
if (x <xLO|x>xHI|y <yLO]|y> yHI
|z < zLO|z > zHI)
image = 0; /* image border omitted */

else
image = MAX( I(x,y,z—1) — 1,
Ix,y—1,2)— 1,
Ix—1,y,z) — 1,
L)
}
[ —————— END--FORWARD PASS-————————- */

3.2. Thinning to unit-wide surface skeleton

The skeletal set obtained is at most two voxels thick. It
can be reduced to unit thickness by applying a thinning
process that has to be split into six directional processes,
each of them applied once. Using directional processes is
necessary to prevent breaking connectedness and excess-
ive shortening.

The six processes occur sequentially in the directions
Top-Down, Down-Top, Left-Right, Right-Left,
Front-Back, and Back-Front, see Fig. 3. A Top-voxel is
defined as a skeletal voxel with a background voxel as the
face-neighbour in the Top-direction. The other five are
similarly defined.

In the Top-Down process Top-voxels are candidates
for sequential removal. A Top-voxel v is removed if all
Conditions B1-B3 are satisfied:

Condition Bl: The face-neighbour of v in the Down-
direction is a Down-voxel. See Fig. 4.

Condition B2: Condition A2 does not occur.

Condition B3: Condition A3 does not occur.

Condition B1 guarantees that the current Top-voxel
belongs to a portion of the set of the skeletal voxels which
is exactly two voxels thick in the Top-Down direction.
For example, see Fig. 5, illustrating a set that is two
voxels thick in the Front-Back direction. The Top-voxels
of the set do not satisfy Condition BI, so they are not

Fig. 4. Four-voxels configuration for removing Top-voxels (see
text). Border voxels are grey, background voxels are white.

Fig. 5. A voxel set, two voxels thick in the Front-Back direc-
tion. The Top-voxels (hatched) are not removed in the
Top-Down process, but the horizontally hatched Top-voxels
are also Front-voxels and will be removed during the Front-
Back process.

removed during the Top-Down process, thus, unwanted
“shrinking” of the set is prevented in the Top-Down
direction.

Condition B2 prevents breaking the connectedness of
the set when the connection occurs between edge-neigh-
bours only. Only four of the twelve rotational cases of
Condition A2 (see middle of Fig. 2) have to be checked,
as Condition Bl guarantees connection in the other
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Fig. 6. A thin surface where the outer voxels are marked in grey.
The hatched voxels are erroneously identified as outer voxels, if
counting the 6-connected background components in the 26-
neighbourhood; the 18-neighbourhood should used.

cases. The cases to be checked are those where the edge-
neighbour connects to one of the four upper edges of the
voxel.

Condition B3 prevents breaking the connectedness of
the set when the connection occurs between point-neigh-
bours only. As Condition B1 guarantees connection in
four cases, Condition A3 has to be checked only for the
cases where the point-neighbour connects to one of the
four upper corners of the voxel (see right of Fig. 2).

The other five processes are similar. After the six direc-
tional processes have been applied, the skeleton consists
of thin surfaces and curves. Some of the local maxima of
the implied distance transform could have been removed
during this thinning process, so complete object recovery
by the reverse distance transformation is no longer pos-
sible. However, the voxels that are not recovered are all
border voxels of the original object, so the distortion of
object shape is not great.

4. Curve skeletonization

The surface skeleton can be further reduced to a curve
skeleton. The original object cannot thereafter be re-

Fig. 7. A 26-neighbourhood shown slice with a “cap” in the
Front-direction. The central voxel is a tip-of-protection voxel.
Background voxels are white. “Don’t care” voxels are grey.
Rotation of the “cap” gives the other five direction masks.

covered, but its topology and geometry are preserved.
The skeletal voxels are labelled with their (D°) distance to
the original background, which might be useful informa-
tion in quantitative analysis of the shape.

4.1. Identification of removable voxels

Voxels are iteratively removed from the surface, until
no more voxels can be removed. Each iteration consists
of three steps (or scans through the image). Differently
from before, only the two first steps are performed in
parallel.

Step 1: Identify outer voxels, N18 = 1, on the surface.
Step 2: Inspect all outer voxels (both from the current
and earlier iterations). Mark a voxel as removable, if it

N

Fig. 8. A box (left), its surface skeleton of labelled voxels (middle), and its curve skeleton (right).
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Fig. 9. Top: A pyramid (left), its surface skeleton (middle), and its curve skeleton (right). Bottom: The pyramid rotated 45° (left), its

surface skeleton (middle), and its curve skeleton (right).

Fig. 10. A cylinder (left), its surface skeleton (middle), and its curve skeleton (right).

has two 26-connected components of outer voxels, but
only one 26-connected component of object in its 26-
neighbourhood.

Step 3: Sequentially remove marked voxels, unless
they are break-point voxels.

During Step 1 the voxels which are candidates for
removal, the outer voxels, are identified. Intuitively, in-
terior surface voxels have more than one background
component in their neighbourhood, and voxels on the
border of a surface have one background component. As
the background is 6-connected, its components are
counted using 6-connectedness. In Fig. 6 the outer voxels
of a surface are marked in grey. When counting compo-
nents in the 26-neighbourhood, the hatched voxels are

also identified as outer voxels, as the background is
connected through the point-neighbours of these voxels.
Removal of a hatched voxel would change the topology
of the object as a tunnel would be created, therefore they
must not be identified as outer voxels. A 3D surface is
actually 18-connected, therefore the 18-neighbourhood
should be used when counting background components.
Simply counting components in the 18-neighbourhood
will not however, identify all removable voxels. For some
complex surfaces the number of background components
for removable border voxels are more than one, as back-
ground voxels being edge-connected to the central voxel
are included as components (of size one voxel). The
solution is to count only the 6-connected background
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Fig. 11. Three 2D objects and their skeletons imposed in black.
A square (left), a rhomb (middle), and a digital Euclidean circle
(right).

components having the central voxel as a face-neighbour,
thus N18. Our definition of outer voxels relates to the
definitions in Refs. [18,197].

During Step 2 every (current and earlier) outer voxel is
checked for removal. The voxel must have only one
26-connected object component; otherwise, the object
will be disconnected. Also, it must have two components
of outer voxels; otherwise, it may be the tip of a protru-
sion. As an example, imagine a flat square surface with
the outer voxels marked. Along the sides there are two
components of outer voxels, while the four corner voxels
only have one such 26-connected component and hence
are not removable. The resulting skeleton is X-shaped,
which is analogous to what happens in 2D skeletoniz-
ation based on the city-block distance. A consequence of
this protrusion preservation is that, for complex surfaces,
some unwanted voxels may remain, giving the curve
skeleton a “cloudy” look. This happens when the outer
voxels do not form a connected set, and hence some outer
voxels only have one component of outer voxels, even
though they do not belong to a protrusion. This “cloudi-
ness” can be taken care of in post-processing. Outer
voxels identified in earlier iterations are checked in sub-
sequent iterations as the removal of neighbouring voxels
may create two components of outer voxels, which then
allows removal.

The removal of any single voxel marked in Step
2 preserves connectedness, but the simultaneous removal
of all of them may disconnect the object. Therefore, Step
3 must be sequential. Before removing a voxel the num-
ber of 26-connected object components in its 26-neigh-
bourhood are counted. If the number of components is

greater than one, the voxel must remain as the object
otherwise would be disconnected.

4.2. Thinning to unit-wide curve skeleton

In case the original surface is (locally) an even number
of voxels broad, the curve skeleton becomes two voxels
wide. It can be reduced to unit thickness by iteratively
applying a final thinning process, until no more voxels
can be removed. Each iteration consists of three steps (or
scans through the image). Only the two first steps are
performed in parallel.

Step 1: Classify tip-of-protrusion voxels, for which
a “cap” of background voxels fits in any of the Top-,
Down-, Left-, Right-, Front-, or Back-directions (see
Fig. 7). Classify break-point voxels, which have more
than one component of object in their 26-neighbour-
hood.

Step 2: Among non-classified voxels, mark outer
voxels, N,18 = 1, whose removal will not create tunnels.

Step 3: Sequentially remove the outer voxels, unless
the object is disconnected.

The result is a 26-connected unit-wide curve skeleton
with the topology and geometry of the original object
preserved.

5. Examples

We are well aware of the difficulty in interpreting the
projections of our thin 3D skeletons. A preferable way to
visualize this kind of images is a rotation sequence of
projections. We assure the reader, that all skeletons are
connected, without tunnels, and one voxel thin, even
though the figures could sometimes be misleading in this
respect.

Volume objects were synthesized in 128 x 128 x 128
images. A first example of the results of our skeletoniz-
ation method is illustrated in Fig. 8. A box of size
40 x 60 x 80 voxels is shown to the left. The surface skel-
eton of the box can be seen in the middle. The skeleton
consists of 5.4% of the original voxels, and includes

Fig. 12. A digital Euclidean sphere with radius 50 voxels (left), its surface skeleton (middle), and curve skeleton (right).
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Fig. 13. A D° sphere, i.e. an octahedron, with radius 50 voxels (left), its surface skeleton (middle), and curve skeleton (right).

(almost) all the information present in the original image.
The original object can be recovered, except for some of
the original border voxels. The curve skeleton of the box
can be seen to the right, describing the shape of the
original object well.

The results of skeletonization of a pyramid (base
85 x 85 and height 122 voxels), the same pyramid rotated
45, and a cylinder (radius 30 voxels and height 80
voxels), can be seen in Figs. 9 and 10, respectively.

When looking at these results, remember that the un-
derlying metric is the D® one. Comparison can be made
to the 2D thinning algorithm in reference (21), where the
underlying metric is the city-block metric. The skeletons
for some 2D objects can be seen in Fig. 11. Compare
these with the pyramids in Fig. 9, and the cylinder in
Fig. 10.

The surface and curve skeletons of a digital Euclidean
“sphere” are rather complex. In the digital world, this
object is a complex one, especially if the D® metric is
assumed, as it is here. A simple object, on the other hand,
is the octahedron, which is the D® (or face-connectivity)
sphere. The surface and curve skeletons of the octahed-
ron are single voxels. Skeletons for the two spheres
are shown in Figs. 12 and 13. A skeleton based on the
Euclidean metric would give a simple skeleton for the
Euclidean sphere, but a complex one for the octahedron.

Elongated objects are well suited for reduction to
curves, see Fig. 14, where an object consisting of three

fused cylinders has been reduced to surface and curve
skeletons.

The computations for the 2 Mbyte images in Figs. §-10
and 12-14 took in total (surface and curve skeletoniz-
ation), on the average, 80 CPU seconds on an ordinary
(DEC Alpha) workstation.

6. Discussion and conclusion

In this paper we present a skeletonization method for
volume objects, which computes both surface and curve
skeletons. The surface skeleton preserves all shape in-
formation, so that (close to) complete recovery of the
object is possible. The curve skeleton preserves the gen-
eral geometry of the object. No disconnections, cavities,
or tunnels are created. Objects with cavities cannot
be reduced to curve skeletons. Some surfaces will remain
in our “curve” skeleton in these cases. If they did not,
the skeletonization algorithm would not be topology
preserving.

The surface and curve skeletonization methods are
iterative in nature, but, in contrast to many other ap-
proaches, the whole outer layer of voxels is treated simul-
taneously so that there are no directional sub-iterations.
This, and the fact that no complex computations, large
sets of masks, or extra memory are used, makes the
implementation efficient. In both cases a final thinning

Fig. 14. Three fused cyliders (left), its surface skeleton (middle), and curve skeleton (right).
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step is necessary, as the first skeleton will be two voxels
thick where the original object has even thickness.

As the underlying metric used in the skeletonization is
DS, the skeletons produced suffers from the same weak-
ness as the skeletonization based on the city-block metric
in 2D (see Ref. [20]); the skeletons are not rotation
independent, as illustrated by the synthetic object in
Fig. 9. Objects in real application images do not accentu-
ate the problem like this, though. Real objects are not
likely to be smooth, and, hence, the skeletons are com-
plex. Their extra or missing skeleton branches due to
rotation can often be disregarded. The rotation depend-
endcy problem can be alleviated by a pre-processing step,
where the object is rotated into a “normalized” position,
for example, by placing the maximum diameter along
one coordinate axis, the maximum thickness orthogonal
to this axis as another coordinate axis, and finally the
axis orthogonal to these two as the third coordinate axis,
see Ref. [24]. In this way, similar structures will always
get the same normalized orientation. A future solution is
to develop skeletons based on more rotation-indepen-
dent underlying metrics. Our skeletonization can be seen
as the starting point to understand how skeletons can be
extracted from any distance map.

Every protrusion that is not (locally) a corner of an
octahedron will generate a skeletal branch, i.e., skeleton-
ization is sensitive to noise. Pre-processing in the form of
morphological smoothing operations will alleviate (but
not solve) this problem, especially if a small octahedron is
used as a structuring element. A simple way to implement
smoothing in our algorithm, is to apply unconditioned
removal for a number of iterations proportional to the
expected noise size (with the drawback that significant
skeleton branches are correspondingly shortened). Real-
istically, however, skeletons from real applications
should be pruned as both significant and unwanted skel-
etal branches will be present in our skeletons. Hence, the
pruning task is to identify and remove the unwanted
branches. Methods with pruning built into the iterative
thinning process might not be able to distinguish be-
tween unwanted and significant branches, when not us-
ing information from the total skeleton, and therefore
remove some significant branches. Developing good
pruning strategies for 3D surface and curve skeletons is
an important problem for further research. As for the
skeletonization itself, the pruning can be expected to be
significantly more complex than in 2D.

Because of the underlying metric, objects with flat
surfaces will produce much “nicer” skeletons than objects
with curved surfaces (cf. Figs. 8 and 12). The only way to
solve this is to develop skeletons based on more rotation
independent underlying metrics.

Skeletonization has proved to be a valuable tool for
shape analysis in 2D. We have no doubt that it will
eventually prove so also in 3D. So far, the major part of
volume images have been representations of various parts

of the human body. Skeletonization of different organs
within the body will make manipulation and analysis of
their shape easier. For compact objects, such as the kid-
neys or liver, surface skeletonization is suitable. For tube-
like objects, such as blood vessels and trachea, curve
skeletonization preserves the essential information, espe-
cially since the curve voxels are marked with the current
diameter of the tube. Various 3D imaging techniques are
becoming more and more available, and so are the neces-
sary memory and computing power to handle these im-
ages. This means that many new applications will appear.
Production quality control, both in macro and micro
scales, for industrial products (e.g. paper, cloth, and ma-
chine parts), animal, and vegetable “objects” and tissues
(e.g. fruit, seed, and cell structure), comes to mind.

7. Summary-computing skeletons in three dimensions

Skeletonization of (3D) volume objects denotes either
reduction to a 2D structure of 3D surfaces and curves, or,
if even more compression is desired and the object to be
skeletonized has no cavities, reduction to a 1D structure
of only 3D curves. The general strategy for 3D skeleton-
ization doet not differ significantly from the strategy in
the 2D case. Object voxels are changed to background
voxels under the constraint that geometry of the object
and topology are preserved.

In this paper we present a topology preserving skel-
etoniztion method for volume objects, which computes
both surface and curve skeletons. The surface skeleton
preserves all shape information, so that (close to) com-
plete recovery of the object is possible. The curve skel-
eton preserves the general geometry of the object. Voxels
of our skeletons are labelled with the D distance to the
original background. This is useful information not only
for the surface skeleton where it enables object recovery,
but also for the curve skeletons, even though the original
object cannot be recovered in this case. No discon-
nections cavities or tunnels are created.

Our skeletonization method is performed in two major
steps. The first step reduces the object to a surface skel-
eton, which requires two iterative phases. During the first
pase, non-multiple voxels are iteratively removed until an
at most two voxel thick surface of skeletal voxels is
identified. During the second phase, this set is reduced to
a set of one voxel thick surfaces (and curves). The original
object can be recovered from its surface skeleton, using
the distance labels. The second step reduces the surface
skeleton, to a curve skeleton, which also requires two
phases. The first reduces the surfaces to curves, the sec-
ond thins the curves to one voxel thickness. We present
resulting skeletons for a number of synthetic and real
2 Mbyte images.

The surface and curve skeletonization methods are
iterative in nature, but, in contrast to many other
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approaches, the whole outer layer of voxels is treated
simultaneously, so that there are no directional sub-
iterations. This, and the fact that no complex computa-
tions or extra memory are used, makes the implementa-
tions efficient, even on an standard sequential
workstation, where, on the average, 80 CPU seconds are
enough to skeletonize objects in 2 Mbyte images.

Skeletonization has proved to be a valuable tool
for shape analysis in 2D. We have no doubt that it
will eventually prove so also in 3D. So far, the major
part of volume images have been representations of
various parts of the human body, but many new ap-
plications will appear with the increase in computer
capacity. Production quality control, both in macro and
micro scales, for industrial products (e.g. paper,
cloth, and machine parts), animal and vegetable “objects”
and tissues (e.g. fruit, seed, and cell structure), comes to
mind.

Acknowledgements

Scientific support were given by Prof. Ewert Bengtsson
and Dr. Bo Nordin, which is gratefully acknowledged, as
is the financial support of the Swedish Research Council
for Engineering Science (TFR), grant number 95-182.

References

[1] L. Lam, S.-W. Lee, C.Y. Suen, Thinning methodologies —
a comprehensive survey, IEEE Trans. Pattern Anal. Mach.
Intell. 14 (9) (1992) 869-885.

[2] T.Y. Kong, A. Rosenfeld, Digital topology: intro-
duction and survey, Comput. Vision, Graphics, Image
Process. 48 (1989) 357-393.

[3] G. Bertrand, Simple points, topological numbers and
geodesic neighbourhoods in cubic grids, Pattern Recogni-
tion Lett. 15 (1994) 1003-1011.

[4] T.-C. Lee, R.L. Kashyap, C-N. Chu, Building skeleton
models via 3-D medial surface/axis thinning algorithms,
CVGIP: Graphical Models Image Process. 56 (6) (1994)
462-478.

[5] P.K.Saha, B.B. Chaudhuri. Detection of 3-D simple points
for topology preserving transformations with application
to thinning, IEEE Trans. on Pattern Anal. Mach. Intell. 16
(10) (1994) 1028-1032.

[6] T.Y. Kong, On topology preservation in 2-D and 3-D
thinning, Int. J. Pattern Recognition Artificial Intell. 9 (5)
(1995) 813-844.

[7] L. Nystrom, G. Borgefors. Synthesising objects and scenes
using the reverse distance transformation in 2D and 3D, in:
C. Braccini, L. DeFloriani, G. Vernazza, (Eds.), Proceed-
ings of ICIAP’95: Image Analysis and Processing, Spring-
er, Berlin, 1995, pp. 441-446.

[8] G. Borgefors, I. Nystrom, G.S. di Baja, Surface skeletoniz-
ation of volume objects, in: P. Perner, P. Wang, and A.
Rosenfeld (Eds.), Proceedings of SSPR’96: Advances in
Structural and Syntactical Pattern Recognition, Springer,
Berlin, Heidelberg, 1996, pp. 251-259.

[9] S. Lobregt, P.W. Verbeek, F.C.A. Groen, Three-dimen-
sional skeletonization: principle and algorithm, IEEE
Trans. Pattern Anal. Mach. Intell. PAMI-2 (1) (1980) 75-77.

[10] G. Bertrand, A parallel thinning algorithm for medial
surfaces, Pattern Recognition Lett. 16 (1995) 979-986.

[11] G. Bertrand, Z. Aktouf, A three-dimensional thinning
algorithm using subfields, in: R.A. Melter, A.Y. Wu (Eds.),
Vision Geometry III, Proc. SPIE 2356, 1994, pp. 113-124.

[12] S. Miguet, V. Marion-Poty, A new 2-D and 3-D thinning
algorithm based on successive border generations, Proc.
4th Conf. on Discrete Geometry in Computer Imagery,
Grenoble, France, 1994, pp. 195-206.

[13] P.K. Saha, D.D. Majumder, A topology and shape
preserving thinning and segmentation method for 3D
digital space, Image Process. Commun. 2 (3) (1997) 3-34.

[14] T. Saito, J.I. Toriwaki, A sequential thinning algorithm for
three dimensional digital pictures using the Euclidean dis-
tance transformation, Proc. 9th Scand. Conf. on Image
Analysis, Uppsala, Sweden, 1995, pp. 507-51.

[15] Cherng Min Ma, M. Sonka, A fully parallel 3D thinning
algorithm and its applications. Computer Vision Image
Understanding, 64 (3) (1996) 420-433.

[16] P.P.Jonker, O. Vermeij, On skeletonization in 4D images,
in: P. Perner, P. Wang, A. Rosenfeld (Eds.), Proc. SSPR’96:
Advances in Structural and Syntactical Pattern Recogni-
tion, Springer, Berlin, Heidelberg, 1996, pp. 79-89.

[17] G. Borgefors, I. Nystrom, G.S. di Baja, Connected compo-
nents in 3D neighbourhoods, Proc. 10th Scand. Conf. on
Image Analysis, Lappeenranta, Finland, 1997, pp.
567-572.

[18] G. Malandain, G. Bertrand, N. Ayache, Topological
segmentation of discrete surfaces, Int. J. Comput. Vision
10 (2) (1993) 183-197.

[19] P.K. Saha, B.B. Chaudhuri, 3D digital topology under
binary transformation with applications, Comput. Vision
Image Understanding 63 (3) (1996) 418-429.

[20] G. Borgefors, On digital distance transforms in three di-
mensions, Comput. Vision Image Understanding 64 (3)
(1996) 368-376.

[21] C. Arcelli, G.S. di Baja. A one- pass two-operations process
to detect the skeletal pixels on the 4-distance transform,
IEEE Trans. Pattern Anal. Mac. Intell. 11 (4) (1989)
411-414.

[22] C. Arcelli, G.S. di Baja, A contour characterization
for multiply connected figures, Pattern Recognition Lett.,
6 (1987) 245-249.

[23] C. Arcelli. Pattern thinning by contour tracing, Comput.
Graphics Image Process. 17 (1981) 130-144.

[24] 1. Nystrom, E. Bengtsson, B. Nordin, G. Borgefors,
Quantitative analysis of volume images - electron micro-
scopic tomography of HIV, Medical Imaging 1994: Image
Processing, Proc. SPIE 2167, 1994, pp. 296-303.



1236 G. Borgefors et al. | Pattern Recognition 32 (1999) 1225-1236

About the Author—GUNILLA BORGEFORS received the M. Eng. and Lic. Eng. in Applied Mathematics, from Linkoping University
in 1975 and 1983, respectively; her Ph.D. in Numerical Analysis, from the Royal Institute of Technology, Stockholm in 1986; and her
“Docent” in Image Processing from Linkdping University in 1992, all in Sweden. From 1982 to 1993 she was employed at the National
Defence Research Establishment, Linkoping, Sweden, eventually as Director of Research for computer vision, and in 1990-1993 as Head
of the Division of Information Systems. From 1993 she is full Professor at Centre for Image Analysis, Swedish University of Agriculural
Sciences,Uppsala, Sweden. Borgefors was President of the Swedish Society for Automated Image Analysis in 1988-1992 and Secretary
and 1st Vice President of the International Association for Pattern Recognition, in 1990-1994 and 1994-96, respectively. Borgefors has
published a large number of papers in international journals and conferences, and has been the editor of three books on image analysis.
Her current research interests are digital geometry in two, three and higher dimensions and the application of image analysis in remote
sensing and in industry.

About the Author—INGELA NYSTROM received the M.Sc., degree in Applied Computer Science and Mathematics, and the Ph.D.
degree in Computerized Image Analysis from Uppsala University, Sweden, in 1991, and in 1997, respectively. She is currently
a Researcher and Lecturer at the Centre for Image Analysis, Uppsala, Sweden. Her research interest is method development for
qualitative shape analysis of volume objects.

About the Author—GABRIELLA SANNITI Di Baja received the Doctoral degree in Physics from the University of Naples, Naples,
Italy, in 1973. Since then, she has been working in the field of Image Processing and Pattern Recognition at the Istituto di Cibernetica of
the National Research Council of Italy, Naples, where she currently has the position of Director of Research. Sanniti di Baja has
published more than one hundred papers in international journals and conference proceedings, and has been editor of four books. Her
main research activities concern two-dimensional shape representation, decomposition and description. Sanniti di Baja is one of the
organizers of the International Workshop on Visual Form. She has been chairman of the Education Committee of the International
Association for Pattern Recognition (IAPR) 1991-1994. Since October 1994, she is the IAPR Secretary.



