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Tutorial on Image-Based Measurement

· Part I: Stereology

· On statistics, count-based measurement, and slices

· Part II: Measuring binarized objects

· Objects represented as a set of pixels

· Part III: Taking grey-values into account

· Sub-pixel precision through integration

· Part IV: Granulometries

· Size and length distributions without segmentation
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Measurement issues

· Sampling invariance: the choice of sampling grid should 
not in1uence the measurement result

· Accuracy (bias)

· Precision

· Preprocessing !?
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Sampling invariance

· Translation invariance

· distances are the same everywhere in the image

· but also: sub-pixel shifts of sampling grid

· Rotation invariance

· the rectangular sampling grid makes this dif8cult

· Scaling invariance

· a denser grid gives higher precision

· ...unless we use sub-pixel techniques

· For many grey-value measurements:
band limit gives maximum attainable precision
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Accuracy vs. precision

bias = lack of
accuracy

P
re

ci
si

o
n

Accuracy
systematic

error

stochastic
error
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Sources of bias

· Uncalibrated equipment

· Incorrect assumptions

· When the model does not 8t reality, conclusions drawn from 
that model are biased

· Modern stereology is assumption-free

· Improper sampling

· Selection bias

· Biased sectioning of 3D sample

· Imaging only the nice-looking cells

· etc.
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Selection bias example

Much more likely
to be sampled
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Precision

· We are measuring a property of a population

· the population has a distribution N(μ,σ
bio

)

· the measurement has an error N(0,σ
meas

)

· what we measure is N(μ,σ
bio

) + N(0,σ
meas

)

unbiased!
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Precision

· In terms of coef8cient of variation:

· CV
bio

 = σ
bio 

/ μ

· CE = σ
meas

 / μ

· we measure CV
meas

2 = CV
bio

2 + CE 2

· Optimally, CE should be somewhat smaller than CV
bio

, 

but not by much!

0.1<
CE

2

CV
bio

2
<0.5
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Filtering affects measurements!

· Low-pass 8ltering always moves the edges inwards

· (Inwards = in the direction of curvature)

· Edge-preserving smoothing 8lters sometimes also move 
edges

Gauss, σ=10 threshold 0.5

count = 4421 count = 4101
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Tutorial on Image-Based Measurement

Part I: Stereology
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Overview

· Sampling

· Stereological approach to measurement

· Estimating volume

· Estimating surface area

· Counting

· Delesse, Buffon, Cavalieri, Mandelbrot
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Independent random sampling

Pick three random numbers between 1 and 9
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Systematic uniform random sampling

· Avoids having to generate so many random numbers

· More ef8cient than independent random sampling

· it has been shown that fewer samples are needed to obtain the 
same precision

Pick one random number
between 1 and 3

Then take every 3rd individual
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The fractionator principle

· Do the estimate in a fraction f of the population

· Compute the total by dividing by f

20 50 0

Pick one random number
between 1 and 3

Then take every 3rd individual
(f = 1/3)

Total counted = 70
Estimate for whole population = 70∙3 = 210
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Measuring in sections
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Measuring in sections
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Measuring in sections

radius

radius
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Measuring in sections
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The Delesse principle

· Achille Delesse showed that the area fraction of oil in a 
2D cross-section of rock is equal to the volume fraction 
of oil in the whole core sample (1847)

A
phase

 / A
ref

 = V
phase

 / V
ref

· Allows studying volume properties in 2D cross-sections
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The Delesse principle

· He also showed that the number of objects in a 2D 
cross section is unrelated to the number in 3D

· The Delesse principle scales to lines and point 
counting:

V
phase

 / V
ref

 = A
phase

 / A
ref

 = L
phase

 / L
ref

 = N
phase

 / N
ref

Delesse (1847) Rosival (1898) Glagolev (1933)
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Stereological approach to measurement
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Buffon’s needle problem

· Georges-Louis Leclerc, Comte de Buffon (1733):

· What is the chance that a needle randomly tossed into the air 
will fall across the lines on a parquet 1oor?

· His solution: The needle will intersect with a probability that is 
directly proportional to the length of the needle and inversely 
proportional to the distance between the lines on the 1oor.

· Full solution: P = (2/π) length / distance

· By tossing a needle of known length 200 times, you can 
estimate the distance between lines

· distance = (2/π) 4 cm / (50/200) = 0.63 ∙ 4 ∙ 4 cm = 10 cm
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Buffon’s needle problem

P P = P + P P = P + P P = P

· The interesting bits:

· This relation holds whether you toss 1 needle 200 times, or 
200 needles 1 time.

· This relation makes no assumption about the shape of the 
needle or the parquet lines
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Buffon’s needle problem

· Thus: this relation can be used to estimate the perimeter 
of any object

· # of intersections = (2/π) total boundary length / distance 
between probe lines

· Randomness is important for the method to be unbiased

· probe orientation needs to be random
(from a uniform orientation distribution)
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The point-counting method

· Estimate 8rst order stereological parameters by counting

· volume

· surface area

· length

· number

· A probe intersects the feature to be measured at a point

· Every point on the feature must be equally likely to 
intersect the probe

· Count 100-200 events for each individual
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Probe-based measurement

· The intersection is a point when

· Probe dimensions  +  feature dimensions  =  3

· When the intersection is a line or an area or a volume, 
other measurement techniques are needed

· Probe dimensions  +  feature dimensions  ≥  3

· When the inequality is not satis8ed: bias!

probe 2D reference 3D reference

point (0) area (2) volume (3)

line (1) length (1) surface area (2)

area / plane (2) number (0) length (1)

volume (3) number (0)
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Estimating volume
(or area in a 2D section)
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Estimating volume

· The probability that a random point within the reference 
volume hits the object is equal to the volume of the 
object divided by the reference volume

P = V
obj

 / V
ref

· Throw many points at the volume, count the number of 
points that hit the object

P ≈ 8 / 25 = 0.32
V

obj
 = P V

ref
 ≈ 0.32 · 1 mm2

V
obj

 ≈ 0.32 mm2
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Estimating volume

· Instead use systematic uniform random sampling

· This leads to sampling grids, paced randomly over 
image: isotropic-uniform-random probes

P ≈ 27 / 119 = 0.227
V

obj
 = P V

ref
 ≈ 0.227 · 1 mm2

V
obj

 ≈ 0.227 mm2
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The Cavalieri principle

· Bonaventura Cavalieri showed that the volume of an 
arbitrarily shaped object can be estimated by serial 
sectioning (1635):

· the 8rst section must be random

· subsequent sections at consistent intervals (distance T)

· estimate the total area in each section (Ai)

· volume is given by V = T Σ A
i

systematic uniform
random sampling!T

A3

A2 A4 A5
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The Cavalieri principle
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The Cavalieri principle
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The Cavalieri principle
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The Cavalieri principle
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The Cavalieri principle

799264 px2 =  70.71 cm2

70.71 cm2 · 2.5 cm = 177 cm3
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The Cavalieri principle
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The Cavalieri principle

74 points =  74 cm2

74 cm2 · 2.5 cm = 185 cm3
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Estimating surface area
(or perimeter in a 2D section)



Cris Luengo
luengo@ieee.org

40

Boundary length

Benoit Mandelbrot showed 
why perimeter measurements 
are scale-dependent
(late 1970’s)

“Nature exhibits not simply a 
higher degree but an altogether 
different level of complexity. The 
number of distinct scales of length 
of natural patterns is for all 
purposes in8nite. That is, the 
closer one looks, the more 
biological surface is present.” 
(Mandelbrot, 1983)

““The in8nite coastline of Britain”The in8nite coastline of Britain”
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Boundary length / surface area

· Translate the parquet lines from Buffon’s problem to line 
density:

· Lines of width of reference area, distance D apart

· Reference area is W x H in size

· H / D lines of length W give L
total

 = W H / D total length

· L
A
 = 1 / D  is the perimeter density of the parquet

· A similar concept is the surface density S
V
 = S / V

ref

· We count number of intersections N with line probe of 
length L

probe

· We compute: L
A
 = π/2 N / L

probe
         S

V
 = 2 N / L

probe
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Boundary length / surface area

Example:

· μCT image of 1 mm across: V
ref

 = 109 μm3

· Line probe of length 25 μm

· 1000 random probe throws yield 125 surface intersections

· S
V
 = 2 N / L

probe
 = 2 ∙ 125 / (1000 ∙ 25) = 0.01 μm-1

· S = S
V
 / V

ref
 = 0.01 ∙ 109 = 10 ∙ 106 μm2
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Surface area
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Surface area
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Counting
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Counting objects

Any 2D shape in a 2D image, any 3D shape in a 3D image 
can be used for counting objects

· placement must be such that any part of the sample has
equal probability of being sampled
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Counting objects

How to count objects partially inside the probe?
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Counting objects

How to count objects partially inside the probe?

Use a counting frame!

(Gundersen, 1977)
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Counting objects

How to count objects partially inside the probe?

Use a counting frame!

(Gundersen, 1977)

Biased count Unbiased count
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The disector

D.C. Sterio (1984) extended counting frame to 3D

Sample section

Look-up section

Sample section Look-up section

objects

2 · volume of disector
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Counting objects in 3D

Total number of objects obtained by combining the 
fractionator and the disector

2

3

1

2

“dilute” by sampling 1 of every N slices
(systematic random uniform sampling)

7 cells counted
used 1 of every 10 slices

estimate = 70 cells

7

1/10
=70
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Summary

· Stereology

· a stochastic approach to measurement

· focus is on unbiased measures

· Use systematic uniform random sampling to select:

· individuals to take samples from

· slices and 8elds of view to image

· objects within the 8eld of view to measure

· Use it with the fractionator principle

· Using probes for measurement:

· probe dimensionality  +  feature dimensionality  ≥  3

· probes randomly placed (and oriented)

· counting frame/disector is the volume probe

· aim to count 100-200 events per individual

· Object counting, and per-object measures

· use the counting frame!
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Tutorial on Image-Based Measurement

Part II: Measuring binarized objects
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Overview

· Area in 2D images  /  volume in 3D images

· Perimeter in 2D images  /  surface area in 3D images

· Curvature and bending energy (2D)

· Bounding boxes, Feret diameters, moments

· Number (count)
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Area in 2D images
Volume in 3D images
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2D area / 3D volume

· The volume of an object is given by the number of 
pixels

· This is an unbiased estimate, assuming point-sampling
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2D area / 3D volume

· Assuming random sampling:

· CV is smaller for grid sampling:

CV=
1

√a
=
1

√pi
r

CV∝ r−3/2



Cris Luengo
luengo@ieee.org

6

2D area / 3D volume

radius (px) radius (px)

Absolute error Relative error

(digitally generated disks of given radius, with random shift w.r.t. sampling grid)

CV∝ r−3/2
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Perimeter in 2D images
Surface area in 3D images
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2D perimeter / 3D surface area

· In 2D: measuring length – dif<cult

· Trace object contour, yields a digital line

· Length measurement on line

· Smoothness assumption of object contour

· In 3D: measuring surface area – much more dif<cult!

· Extract surface pixels

· Estimate a 3D surface through these points

· Estimate area of 3D surface
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Tracing a 2D object’s contour

· Start at a random point, e.g. top left pixel

· Next pixel on contour must be to the right, down-right, 
down, or down-left

· We now iterate:

· take previous direction, change it counter-clockwise by 1

· check that position for an object pixel – if not, change 
direction clockwise until we <nd an object pixel

· add this pixel to the list, and make it “current pixel”

· Iteration <nishes when
we get to initial pixel
and initial direction



Cris Luengo
luengo@ieee.org

10

Chain codes

· When walking along an object’s contour, we do not 
need to keep coordinates for each object

· The step direction from one pixel to the next is enough 
to store the shape information

· Together with the coordinates of
the <rst pixel, yields all information
on object

· (A.K.A. Freeman codes)

0,0,7,0,0,6,4,3,5,4,4,3,1
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Chain code length

· The length of a chain code is given by the length of 
each step taken

· even codes (0, 2, 4, 6) are vertical and horiz. steps

· odd codes (1, 3, 5, 7) are diagonal steps

· Step sizes of 1 and √2 overestimate length
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Chain code length

· The length of a chain code is given by the length of 
each step taken

· even codes (0, 2, 4, 6) are vertical and horizontal steps

· odd codes (1, 3, 5, 7) are diagonal steps

· Step sizes of 1 and √2 overestimate length
(Freeman, 1970)

· Step sizes of 0.948 and 1.340 yield unbiased measure
(Kulpa, 1977)

· Additionally, add “corner count”
(Vossepoel, 1982)

· Indicates changes of direction
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Chain code length

Neven + √2 Nodd

Npixels

0.948 Neven + 1.340 Nodd

0.980 Neven + 1.406 Nodd

                   - 0.091 Ncorner

es
tim

at
ed

 p
er

im
et

er

angle
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Chain code length
a
b
s
o
lu

te
 e

r
r
o
r
 (
%

 o
f 
to

ta
l 
p
e
r
im

e
te

r
)

radius

N
even

 + √2 N
odd

N
pixels

0.948 N
even

 + 1.340 N
odd

0.980 N
even

 + 1.406 N
odd

                   - 0.091 N
corner
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Perimeter from chain code length

· The chain code represents a polygon going through the 
centre of pixels on the object boundary

· The actual perimeter is half a pixel further out

8×1/2 px = 4 px

8×2/4 px = 22 px
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Perimeter from chain code length

· The chain code represents a polygon going through the 
centre of pixels on the object boundary

· The actual perimeter is half a pixel further out

· Theoretical value for a circle: π

 true radius r’ = r + 1/2

 true perimeter p’ = 2 ( r + 1/2 ) π = p + π
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3D surface area

· Find all boundary points

· (object points with a background neighbour)

· No chain codes possible

· But: order of pixels wasn’t important in chain codes to 
measure length

· One approach:

· Classify neighbourhood type for each surface voxel

· Determine optimal weights for each neighbourhood type

· A different approach:

· Using marching cubes, obtain a triangulation mesh

· Sum surface area of triangles
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Curvature
Bending energy

(2D)
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Curvature

· Curvature κ = derivative of θ along the curve

· θ
i
 = π/4 [ c

i+1 – c
i
 ]

difference computed in modulo arithmetic, in range [-3,3]

· D(i,i+1) = 0.5 ( s(c
i
) + s(c

i+1) )

· s(c
i
) = 0.948 for even c

i
 and 1.340 for odd c

i

κ=
dθ
ds

≈
θ
i+1−θi

D( i , i+1) θ
i

θ
i+1



Cris Luengo
luengo@ieee.org

20

Curvature

· Curvature κ = derivative of θ along the curve

· Problem:
Very rough estimation of
point-wise curvature

· angles discretised

· distances discretised

· Solution: Smooth κ value over several neighbours

· effect is similar to smoothing boundary before computation

κ=
dθ
ds

≈
θi+1−θi
D( i , i+1) θ

i

θ
i+1
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Bending energy

· Often used as a shape descriptor

· Given by integral along the perimeter of the square of 
curvature

· Integrating along perimeter requires proper step lengths

B.E.= ∫
contour

κ
2
ds

B.E.≈∑
i ( θi+1−θi
D( i , i+1))

2

D( i , i+1)
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Bounding boxes
Feret diameters

Moments
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Bounding box

· Find minimal and 
maximal x and y 
coordinates for each 
connected component

· Useful for extracting 
individual objects from 
an image for further 
analysis (e.g. texture)

Extends easily to 3D!
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Feret diameters

Shortest projection

A Feret diameter
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Feret diameters

· Easily computed using the chain code:

· <nd coordinates of each pixel, in a rotated coordinate system

· record minimum and maximum coordinate

· rotate coordinate system in small increments

· Slightly more complex, but more precise and faster:

· compute convex hull of object

· use “rotating callipers” algorithm to directly determine largest 
and smallest projections

· As in perimeter:
add 1 px to diameter!
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Rotating callipers algorithm

antipodal point

Shortest projection must be
perpendicular to one of the
sides of the convex hull
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Rotating callipers algorithm
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Rotating callipers algorithm
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Rotating callipers algorithm
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Rotating callipers algorithm
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Rotating callipers algorithm
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Feret diameters

Shortest projection

Length of projection perpendicular
to shortest projection

Minimal bounding box
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Feret diameters

Longest projection
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Minimal bounding box

· Find angle for minimal 
Feret diameter

· Get minimal and 
maximal coordinates 
under given rotation

· Useful for extracting 
individual objects from 
an image for further 
analysis (e.g. texture)

Doesn’t extend to 3D
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1st order moments

(μ
x
,μ
y
)

· Centre of mass

· Useful reference point for other measures

· e.g. mean distance of boundary points to centre of mass

 x=
1

N
∑ x

 y=
1

N
∑ y

x-coordinate

y
-c

oo
rd

in
at

e



Cris Luengo
luengo@ieee.org

36

2nd order central moments

I
yy
=
1

N
∑ (y−μ y)

2

I xx=
1

N
∑(x−μx)

2

I xy=
1

N
∑(x−μx)(y−μy )

x-coordinate

y
-c

oo
rd

in
at

e (μ
x
,μ
y
)

· Eigenvectors of the moment of 
inertia tensor give main object 
axes

· Eigenvalues give size of object 
along these axes (moment of inertia tensor)

I=
I
xx

−I xy
−I x , y I yy
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Elliptical approximation

· Compute centre of gravity

· Compute inertia tensor

· Compute eigenvalue 
decomposition of tensor

· 2 eigenvectors are main 
ellipse axes

· Ellipse diameters are 
given by 2×eigenvalue

Extends easily to 3D!
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Counting
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Counting number of objects

· Label image

· Count labels

· Nobj = 44
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Euler number

· In 2D: # of objects − # of holes

· In 3D: # of objects − # of tunnels + # of cavities

E = 1 E = 0
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Gray’s algorithm

· Computes Euler number based on 2x2 image regions

· E = ( C1 − C2 − 2C3 ) / 4

· C1 = # of 2x2 regions with only 1 pixel set

· C2 = # of 2x2 regions with 3 pixels set

· C3 = # of 2x2 regions 2 pixels set in a diagonal

1

0 1

01

0 0

0 0

1 1

1

C1 C2 C3
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Nobj = 44

Counting objects

E = 44 E = -43

E = -43
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Summary

· Area in 2D images  /  volume in 3D images

· counting pixels

· Perimeter in 2D images  /  surface area in 3D images

· take neighbourhood relations into account

· Curvature and bending energy (2D)

· second derivative of boundary

· Bounding boxes, Feret diameters, moments

· Number (count)

· Gray’s algorithm as an alternative
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Tutorial on Image-Based Measurement

Part III: Taking grey-values
into account
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Overview

· The point-sampling model:

· image formation, band limit, sampling, Fourier analysis

· Soft clipping

· Measurement:

· area

· perimeter

· curvature

· bending energy

· Euler number (object count)
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Possible measures

· Area (2D) / volume (3D)

· integral over image (sum of grey values)

· effectively dimensionality-independent

· Perimeter (2D) / surface area (3D)

· we convert the problem to a volume problem

· effectively dimensionality-independent

· (Isophote) curvature (2D/3D)

· based on 2nd derivative along the contour

· Bending energy (2D/3D)

· integrating squared curvature along contour

· Euler number (object count, 2D)

· integral of curvature along contour is constant
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The point sampling model
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The point-sampling model

· Point sampling is what is assumed in signal theory

· Point sampling is only useful if the image is band 
limited

· otherwise we get aliasing

· sampling frequency > 2 ∙ band limit (Nyquist)

· CCDs do not point-sample

· but: same as a uniform 7lter followed by point sampling

⊗ 
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Band-limited images

· Any optical image formation system imposes a band 
limit

· A sampled band-limited image exactly represents the 
continuous band-limited image

· if sampled properly

· The continuous band-limited image is a version of real 
world that lacks very high frequencies

· This smooth image preserves large-scale geometric 
properties of the imaged objects, but not small scale 
ones

· as in “the in7nite coastline of Britain”
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The sampling property

Discrete
image

Discrete
image

Continuous
image

Continuous
image

Continuous LTI

Discrete LTI

(if band-limited!)
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Optical image formation

· Image formation system (e.g. lenses) creates a band-
limited image — imposes resolution

· Standard optics’ point-spread function (PSF) can be 
approximated by a Gaussian

· ideal lens has Airy function
for PSF

· but lens imperfections are
unavoidable
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Optical image formation

· The image is smoothed by a PSF (convolution!) before 
sampling

· Neither the smoothing nor the sampling change the 
total amount of light in the image

⊗ ⊗

⊗ 
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What happens in the Fourier domain

spatial domain frequency domain

continuous
function

sampled
function

· The 0th frequency is proportional to the total amount of 
light

· 0th frequency is unaltered by sampling

· Sum of samples is equal (proportional) to integral over 
continuous function
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spatial domain frequency domain

continuous
function

sampled
function

What happens in the Fourier domain

· But: aliasing can affect the 0th frequency!

· Sum of samples is equal (proportional) to integral over 
continuous, band-limited function if sampled correctly
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Soft clipping
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threshold

128 16096

soft clipping

128 16096

Threshold vs. soft clipping
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Threshold vs. soft clipping

threshold

128 16096

soft clipping

128 16096
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Soft clipping

Selecting a proper range is important:

· too small: introduction of aliasing

· too large: background and foreground not uniform
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frequency
0 0.1 0.2 0.3 0.4 0.5

lo
g

1
0
(m

a
g

n
it
u
d
e

)

-3

-2

-1

0

1

2

3

4

5

6

original
soft clipped
hard clippedInterpolated 4x

before soft clipping

Soft clipping
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Gaussian 7ltering
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Low-pass 7lters

Frequency domainSpatial domain

FT

The typical “box 7lter”
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Low-pass 7lters

Frequency domainSpatial domain

FT

The “ideal” low-pass 7lter
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Low-pass 7lters

Frequency domainSpatial domain

FT

The Gaussian 7lter
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Gaussian 7lters

· Provide optimal compromise between compactness in 
spatial and frequency domain

· Isotropic but separable

· Derivatives computed with derivative of Gaussian:

∂

∂ x
(f⊗G)=f⊗ ∂

∂ x
G



Cris Luengo
luengo@ieee.org

22

Area in 2D images
Volume in 3D images
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2D area / 3D volume

· The equivalent of counting pixels in the binary case:

integrating intensity

· Unbiased estimate for size if:

· pixels inside the object have value 1

· pixels outside the object have value 0

· pixels on the boundary have a grey-value given by the point-

spread function of the optical system

· Low-pass 7ltering the image does not modify the result

· (depending on boundary condition)
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2D area (ideal case)

Expected measure: 1385.442360 px2

Grey-value measure: 1385.442352 ± 0.000001 px2 (std = 0.000006)
Binary measure: 1385.8 ± 0.6 px2 (std = 2.9)

Grey-value measure

Binary measure

Area of 100 disks (r = 21 px) with sub-pixel shifts
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2D area (with soft clipping)

Expected measure: 1385.442360 px2

Grey-value measure: 1385.370 ± 0.003 px2 (std = 0.013)

Binary measure: 1385.31 ± 0.08 px2 (std = 0.39)

Area of 100 disks (r = 21 px) with sub-pixel shifts

Grey-value measure

Binary measure

(For soft clipping I

increased the samp-

ling density 4 times)

Binary measure

improved by factor

4-3/2 = 0.125
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Perimeter in 2D images
Surface area in 3D images
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Perimeter

· Given a grey-value object with a constant intensity H

· If we extend the object by a 7xed distance D, the 
volume of the extension is given by: P D H
(P = perimeter)

DH

We converted length estimation
problem into area estimation
problem (sampling-invariant!)

DH=∫
x

( f ( x)−f (x+ D))dx
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Perimeter

· Given a grey-value object with a constant intensity H

· If we extend the object by a 7xed distance ε, the 
volume of the extension is given by: P ε H
(P = perimeter)

εH

P=
1

H
∫
x

lim
ε→0

f (x )−f (x+ε)
ε

dx

in the direction of the gradient....
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Perimeter

· Soft clipping

· Gradient magnitude

· Integration (sum)

(
∂ f

)
2

+(
∂ f

)
2
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Perimeter

Expected measure: 131.946891 px
Grey-value measure: 131.9415 ± 0.0001 px (std = 0.0006)
        with larger σ: 131.7958 ± 0.0001 px (std = 0.0006)
Binary measure: 132.04 ± 0.01 px (std = 0.07)

Grey-value measure

Binary measure

Perimeter of 100 disks (r = 21 px) with sub-pixel shifts

Grey-value measure
(larger σ)

(For soft clipping I
increased the samp-
ling density 4 times)
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Curvature
Bending energy

(2D)
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Isophote curvature

· Contour direction:

· To differentiate along the curve:

· Curvature κ = derivative of θ along the curve

c⃗=(−f y , f x)

θ=arccos
−f

y

|g|
=arcsin

f x

|g|
=arctan

−f y
f x

d

ds
=cosθ ∂

∂ x
+sinθ ∂

∂ y
=

−f y
∣g∣

∂
∂ x

+
f x

∣g∣
∂

∂ y

κ=
dθ
ds

=−
f
xx
f y
2−2 f xy f x f y+f yy f x

2

(f x
2+f y

2 )
3/2

=
−f cc
|g|

g⃗=(f x , f y )

c⃗
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Bending energy

· Given by integral along the perimeter of the square of 
curvature

· Integrate along perimeter by multiplying by |g| and 
integrating over the image

B.E.= ∫
contour

κ2ds=∬
image

κ2|g|d x d y=∬
image

f cc
2

|g|
d x d y



Cris Luengo
luengo@ieee.org

34

Bending energy

· Given by integral along the perimeter of the square of 
curvature

· Integrate along perimeter by multiplying by |g| and 
integrating over the image

soft clip f
cc

|g|
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Counting
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Euler number

· In 2D: # of objects − # of holes

· In 3D: # of objects − # of tunnels + # of cavities

E = 1 E = 0
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Euler number

· Integral of curvature along a closed contour is always 
2π, a hole in an object contributes with -2π

· Integral of second derivative in gradient direction also 
yields a constant 2π for a closed contour

Euler number=
1

2π
∫

contour

κd s=
1

2π
∬

image

κ∣g∣d x d y=
1

2π
∬

image

−f cc d x d y

Euler number=
1

2π
∬
image

f ggd x d y
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Summary

· Area/volume = integral over image

· Perimeter/surface area

· obtained by converting to area measurement problem

· Curvature

· computed through 2nd derivative along contour

· bending energy & Euler number

· Prepare image by soft clipping

· (equivalent to thresholding, but without loss of band 
limitation)
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Tutorial on Image-Based Measurement

Part IV: Granulometries
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The segmentation problem
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Overview

• The closing and opening
• remove objects from image by size

• The granulometry
• estimates size distributions without segmentation

• The path closing and opening
• removes objects from image by length

• use with granulometry to estimate length distributions

• I will also discuss recent and current improvements



Cris Luengo
luengo@ieee.org

4

Using an image as a landscape
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Basic operations math. morphology
B

ri
gh

tn
es

s

Location

Probe
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Erosion = local minimum

Probe
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Erosion = local minimum

B

ε
B
f=∧

b∈B

f b
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Dilation = local maximum
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Dilation = local maximum

δ
B
f=∨

b∈B

f b
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Dilation + erosion = closing
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Dilation + erosion = closing

ϕ
B
f=ε

B̌
δB f=∧

t∈B̌

(∨
b∈B

f b)−t
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Dilation + erosion = closing

ϕB f=ε
B̌
δB f=∧

t∈B̌
∨
b∈B

−t

f b



Cris Luengo
luengo@ieee.org

13

Dilation + erosion = closing

Probe
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The closing on an image

Dilation Erosion

Probe
Closing
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The opening

Opposite of the closing: erosion 7rst, then dilation

Opening
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Closing at different scales

size = 10 size = 20 size = 30
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The granulometry
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The granulometry

• A cumulative size distribution

• Volume-weighted:

• Objects are weighted by the number of pixels and the contrast

• Objects with higher contrast contribute more

• We are not counting objects!

• To compare with real-world measurements one must:

• Prepare the image correctly
• all objects have the same contrast
• objects and background have uniform intensity

• Normalize the granulometry appropriately

• Apply a counting frame (?)
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The size distribution

If the granulometry is a cumulative size distribution, then 
its derivative is a size distribution
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size (px)
A B C D

 A: untreated milk gel

 B: + substrate

△ C: + substrate & enzyme

◇ D: + substrate & enzyme

Pore size distribution

(Luengo, PhD thesis, TU Delft, 2003)
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size (μm)

Pore size distribution

(Luengo, PhD thesis, TU Delft, 2003)
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Closing with different shapes

Probe
Probe

Probe
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Rotation invariance
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Closing with lines at many angles
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Closing with lines at many angles

The minimum of all these closings is also a closing

∧
α

ϕ
Bα

f=∧
α
∧
t∈Bα

∨
b∈Bα ,−t

f b
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Anisotropic

Isotropic

Isotropic and non-isotropic closing

Selects on width

Selects on length
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Length distribution

Easy to measure length 
for each grain

Not so easy...
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Length distribution

3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Length of rice grains (mm)

Separated, sieve method    

Touching, sieve method     

Separated, classical method

Touching, classical method 

(Luengo & van Vliet, 2001)
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Length distribution

3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Length of rice grains (mm)

Separated

Touching 

broken

mixed

intact

(Luengo & van Vliet, 2001)
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Rotating line segments

• How many angles do we need to probe to get an 
accurate measurement?
• Longer line = more angles! (~l)

• Obviously quite expensive

• How about 3D images?
• ~l2

• Prohibitive (or need lots of patience!)

• Is there a better way?
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Path closing and opening

· Minimum over closings with 
all possible lines that are 
approximately horizontal and 
composed of p pixels

· Thus: instead of taking 
closings with many slightly 
rotated lines, we take closings 
with many variations on the 
line shape

· Number of combinations 
grows exponentially with p

(Buckley & Talbot,  2000)
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Adjacency relations

Horizontal paths:
E, NE, SE

Diagonal paths:
NE, N, E

Vertical paths:
N, NW, NE

SE, E, S
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Path closing and opening

Horizontal paths:
E, NE, SE
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Path closing and opening

• Clever heuristic makes this algorithm O(p log (p))
• (Talbot & Appleton, Image and Vision Computing 25(4), 2007)

• This is true for any number of dimensions

• Minimum of output of the 4 path closings gives a 
rotation-invariant operation (in 2D)
• In 3D there are 13 different path closings

• O(p log (p)) is much better than the O(ln-1) complexity of 
rotated straight line closing (in an n-dimensional image)

• We need to add a constraint on consecutive steps to 
make the assumption p ≈ l
• (Luengo, IEEE Trans. Image Processing 19(6), 2010)
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Constrained path closing and opening

Allow only one consecutive step in a direction that is not 
the main direction
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Constrained path opening

original

constrained

O˚

45˚
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Fibre composite

(ren
d

erin
g : A

rttu
 M

iettin
en

)
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Fibre length distribution

(Luengo, 2010)

· Volume-weighted distribution ≠ count

· Fibres partially in the image?
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Fibre length distribution

· Fibres cut at edge of image

· Long 7bres will seem shorter

· We will underestimate the amount of long 7bres,
and overestimate the amount of short 7bres

· Long 7bres are more likely to be cut by the image edge

· If we don’t measure cut 7bres,
we will underestimate the amount of long 7bres

· Fibres longer than image will always be cut

· Choose a proper image size
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Correcting the distribution

measured

corrected

input

(Miettinen & al., 2012)
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Correcting the distribution

measured

corrected

(Miettinen & al., 2012)
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Incomplete and robust path opening

· Incomplete path opening:

· rank-max opening

· a certain number of the l pixels along the path are ignored

· (by original authors of path opening)

· Robust path opening:

· skipping at most n pixels in between each pixel on the path

· based on my version of the algorithm

· (Cokelaer, Talbot & Chanussot, 2012)
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Parsimonious path opening

· Speeding up the path opening by:

· selecting maximal paths from top to bottom of image
(or left to right, or diagonally)

· applying 1D openings along these paths

· reconstruction by dilation with input image as mask

· Algorithm is linear with number of pixels in image and 
independent of path length

· Selecting paths in smaller strips of the image improves 
results

(Morard, DoklLdal & DecenciMre, 2014)
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Parsimonious path opening

(Morard, DoklLdal & DecenciMre, 2014)
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Graph-based path opening

· Preselect paths using the grey-value skeleton

· independent of path direction

· avoids large gaps

· Preselected paths form a graph

· A graph version of the algorithm addresses many fewer 
pixels

· O(p log p) operation becomes much closer to O(p)

· ...but in practice larger p makes the algorithm faster

· H-minima transform simpli7es the skeleton

· for further speed improvements
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Graph-based path opening

(Asplund & Luengo, 2015)

no H-minima
transform

small H

larger H
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Graph-based path opening

input

standard
path opening

graph-based
path opening

(Asplund & Luengo, 2015)
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Summary

· Granulometry

· multi-scale operation

· normalization to obtain size distribution estimate

· applied with isotropic structuring elements:
size is width

· applied with rotating line structuring elements:
size is length

· Path opening

· fast alternative to line structuring elements at many angles

· yields length distribution in a granulometry
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